Properties

Label 3.121801.4t4.a.a
Dimension $3$
Group $A_4$
Conductor $121801$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $A_4$
Conductor: \(121801\)\(\medspace = 349^{2}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.4.121801.1
Galois orbit size: $1$
Smallest permutation container: $A_4$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $A_4$
Projective stem field: Galois closure of 4.4.121801.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - 10x^{2} + 3x + 20 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 9 + 5\cdot 37 + 27\cdot 37^{2} + 10\cdot 37^{3} +O(37^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 18 + 28\cdot 37 + 22\cdot 37^{2} + 31\cdot 37^{3} + 17\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 21 + 30\cdot 37 + 8\cdot 37^{2} + 7\cdot 37^{3} + 12\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 27 + 9\cdot 37 + 15\cdot 37^{2} + 24\cdot 37^{3} + 6\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$4$$3$$(1,2,3)$$0$
$4$$3$$(1,3,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.