Properties

Label 3.11e3_103e2.42t37.2c2
Dimension 3
Group $\GL(3,2)$
Conductor $ 11^{3} \cdot 103^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\GL(3,2)$
Conductor:$14120579= 11^{3} \cdot 103^{2} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 9 x^{5} - 12 x^{4} + 74 x^{3} - 56 x^{2} + 10 x + 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 5 a^{2} + 3 a + 10 + \left(a + 3\right)\cdot 13 + \left(2 a^{2} + 8 a + 1\right)\cdot 13^{2} + \left(a^{2} + 3 a\right)\cdot 13^{3} + \left(11 a^{2} + 12 a + 4\right)\cdot 13^{4} + \left(2 a^{2} + 12 a + 1\right)\cdot 13^{5} + \left(11 a^{2} + 7 a + 4\right)\cdot 13^{6} + \left(2 a^{2} + 2 a + 5\right)\cdot 13^{7} + \left(7 a^{2} + 4 a + 5\right)\cdot 13^{8} + \left(2 a^{2} + 9 a + 1\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 11 + 4\cdot 13 + 7\cdot 13^{2} + 5\cdot 13^{3} + 5\cdot 13^{4} + 12\cdot 13^{6} + 5\cdot 13^{7} + 13^{8} + 9\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 7 a + 4 + \left(5 a^{2} + 4 a + 6\right)\cdot 13 + \left(5 a^{2} + 4 a + 1\right)\cdot 13^{2} + \left(11 a^{2} + 11 a + 5\right)\cdot 13^{3} + \left(12 a^{2} + 9 a + 6\right)\cdot 13^{4} + \left(7 a^{2} + a + 12\right)\cdot 13^{5} + \left(2 a^{2} + 9 a + 9\right)\cdot 13^{6} + \left(a^{2} + 2 a + 11\right)\cdot 13^{7} + \left(9 a^{2} + 8 a + 7\right)\cdot 13^{8} + \left(2 a^{2} + 6 a + 1\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 5 a^{2} + \left(4 a^{2} + 1\right)\cdot 13 + \left(8 a^{2} + 6 a + 10\right)\cdot 13^{2} + \left(10 a^{2} + 8 a\right)\cdot 13^{3} + \left(8 a^{2} + 11 a + 12\right)\cdot 13^{4} + \left(11 a^{2} + 10 a + 4\right)\cdot 13^{5} + \left(11 a^{2} + 5\right)\cdot 13^{6} + \left(7 a + 6\right)\cdot 13^{7} + \left(9 a^{2} + 3 a + 11\right)\cdot 13^{8} + \left(7 a + 12\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 12 a^{2} + 8 a + 5 + \left(8 a^{2} + 10 a + 11\right)\cdot 13 + \left(11 a^{2} + 8 a + 5\right)\cdot 13^{2} + \left(7 a^{2} + 9 a + 1\right)\cdot 13^{3} + \left(2 a^{2} + a + 8\right)\cdot 13^{4} + \left(9 a^{2} + 7 a + 1\right)\cdot 13^{5} + \left(9 a^{2} + 6 a + 11\right)\cdot 13^{6} + \left(12 a^{2} + 7 a + 4\right)\cdot 13^{7} + \left(a^{2} + 7 a + 6\right)\cdot 13^{8} + \left(5 a^{2} + 12 a + 1\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 6 }$ $=$ $ a^{2} + 3 a + 9 + \left(7 a^{2} + 7 a + 12\right)\cdot 13 + \left(5 a^{2} + 5\right)\cdot 13^{2} + \left(11 a + 3\right)\cdot 13^{3} + \left(2 a^{2} + 3 a + 9\right)\cdot 13^{4} + \left(2 a^{2} + 11 a + 4\right)\cdot 13^{5} + \left(12 a^{2} + 8 a + 5\right)\cdot 13^{6} + \left(8 a^{2} + 7 a\right)\cdot 13^{7} + 9 a^{2}13^{8} + \left(7 a^{2} + 10 a + 4\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 9 a^{2} + 5 a + 1 + \left(12 a^{2} + 2 a + 12\right)\cdot 13 + \left(5 a^{2} + 11 a + 6\right)\cdot 13^{2} + \left(7 a^{2} + 7 a + 9\right)\cdot 13^{3} + \left(a^{2} + 12 a + 6\right)\cdot 13^{4} + \left(5 a^{2} + 7 a\right)\cdot 13^{5} + \left(4 a^{2} + 5 a + 4\right)\cdot 13^{6} + \left(12 a^{2} + 11 a + 4\right)\cdot 13^{7} + \left(a^{2} + a + 6\right)\cdot 13^{8} + \left(7 a^{2} + 6 a + 8\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(2,4)(5,7)$
$(1,7)(3,6,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$3$
$21$$2$$(3,5)(4,6)$$-1$
$56$$3$$(1,4,6)(2,3,5)$$0$
$42$$4$$(1,7)(3,6,5,4)$$1$
$24$$7$$(1,5,2,4,3,6,7)$$-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$
$24$$7$$(1,4,7,2,6,5,3)$$\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$
The blue line marks the conjugacy class containing complex conjugation.