Properties

Label 3.11e2_619e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 11^{2} \cdot 619^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$46362481= 11^{2} \cdot 619^{2} $
Artin number field: Splitting field of $f= x^{4} - 5 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 233 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 54 + 147\cdot 233 + 85\cdot 233^{2} + 81\cdot 233^{3} + 40\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 62 + 146\cdot 233 + 12\cdot 233^{2} + 214\cdot 233^{3} + 225\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 153 + 6\cdot 233 + 221\cdot 233^{2} + 221\cdot 233^{3} + 7\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 197 + 165\cdot 233 + 146\cdot 233^{2} + 181\cdot 233^{3} + 191\cdot 233^{4} +O\left(233^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.