Properties

Label 3.11e2_61.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 11^{2} \cdot 61 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$7381= 11^{2} \cdot 61 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 7 x^{4} + 40 x^{3} - 37 x^{2} - 533 x + 529 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 31 + \left(58 a + 58\right)\cdot 73 + \left(64 a + 57\right)\cdot 73^{2} + \left(19 a + 70\right)\cdot 73^{3} + \left(30 a + 62\right)\cdot 73^{4} + \left(34 a + 13\right)\cdot 73^{5} + \left(11 a + 47\right)\cdot 73^{6} + \left(32 a + 68\right)\cdot 73^{7} + \left(59 a + 68\right)\cdot 73^{8} + \left(a + 3\right)\cdot 73^{9} + \left(60 a + 32\right)\cdot 73^{10} +O\left(73^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 52 a + 19 + \left(39 a + 37\right)\cdot 73 + \left(71 a + 52\right)\cdot 73^{2} + \left(6 a + 13\right)\cdot 73^{3} + \left(54 a + 71\right)\cdot 73^{4} + \left(67 a + 6\right)\cdot 73^{5} + \left(3 a + 34\right)\cdot 73^{6} + \left(29 a + 25\right)\cdot 73^{7} + \left(50 a + 61\right)\cdot 73^{8} + \left(33 a + 21\right)\cdot 73^{9} + \left(63 a + 38\right)\cdot 73^{10} +O\left(73^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 17 + 68\cdot 73 + 13\cdot 73^{2} + 30\cdot 73^{3} + 35\cdot 73^{4} + 54\cdot 73^{5} + 37\cdot 73^{6} + 47\cdot 73^{7} + 27\cdot 73^{8} + 39\cdot 73^{9} + 48\cdot 73^{10} +O\left(73^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 35 a + 72 + \left(14 a + 49\right)\cdot 73 + \left(8 a + 47\right)\cdot 73^{2} + \left(53 a + 65\right)\cdot 73^{3} + \left(42 a + 60\right)\cdot 73^{4} + \left(38 a + 13\right)\cdot 73^{5} + \left(61 a + 47\right)\cdot 73^{6} + \left(40 a + 7\right)\cdot 73^{7} + \left(13 a + 69\right)\cdot 73^{8} + \left(71 a + 22\right)\cdot 73^{9} + \left(12 a + 64\right)\cdot 73^{10} +O\left(73^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 29 + \left(33 a + 31\right)\cdot 73 + \left(a + 8\right)\cdot 73^{2} + \left(66 a + 36\right)\cdot 73^{3} + \left(18 a + 7\right)\cdot 73^{4} + \left(5 a + 10\right)\cdot 73^{5} + \left(69 a + 51\right)\cdot 73^{6} + \left(43 a + 35\right)\cdot 73^{7} + \left(22 a + 37\right)\cdot 73^{8} + \left(39 a + 72\right)\cdot 73^{9} + \left(9 a + 48\right)\cdot 73^{10} +O\left(73^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 53 + 46\cdot 73 + 38\cdot 73^{2} + 2\cdot 73^{3} + 54\cdot 73^{4} + 46\cdot 73^{5} + 73^{6} + 34\cdot 73^{7} + 27\cdot 73^{8} + 58\cdot 73^{9} + 59\cdot 73^{10} +O\left(73^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(5,6)$
$(1,2,3)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,5)(2,4)(3,6)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(1,5)(3,6)$$-1$
$6$$2$$(1,2)(4,5)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,3,5,6)$$-1$
$6$$4$$(1,4,5,2)(3,6)$$1$
$8$$6$$(1,2,3,5,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.