Properties

Label 3.11e2_31_37e2.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 11^{2} \cdot 31 \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$5135119= 11^{2} \cdot 31 \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 20 x^{2} + 61 x + 58 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 227 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 23\cdot 227 + 120\cdot 227^{2} + 215\cdot 227^{3} + 28\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 74 + 108\cdot 227 + 30\cdot 227^{2} + 157\cdot 227^{3} + 27\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 152 + 155\cdot 227 + 127\cdot 227^{2} + 158\cdot 227^{3} + 13\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 216 + 166\cdot 227 + 175\cdot 227^{2} + 149\cdot 227^{3} + 156\cdot 227^{4} +O\left(227^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.