Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 353 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 191 + 87\cdot 353 + 190\cdot 353^{2} + 278\cdot 353^{3} + 173\cdot 353^{4} +O\left(353^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 205 + 19\cdot 353 + 80\cdot 353^{2} + 311\cdot 353^{3} + 125\cdot 353^{4} +O\left(353^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 327 + 97\cdot 353 + 213\cdot 353^{2} + 253\cdot 353^{3} + 324\cdot 353^{4} +O\left(353^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 337 + 147\cdot 353 + 222\cdot 353^{2} + 215\cdot 353^{3} + 81\cdot 353^{4} +O\left(353^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $-1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.