Properties

Label 3.11e2_137e2.12t33.1c1
Dimension 3
Group $A_5$
Conductor $ 11^{2} \cdot 137^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$2271049= 11^{2} \cdot 137^{2} $
Artin number field: Splitting field of $f= x^{5} - 5 x^{3} - 5 x^{2} + 24 x - 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 229 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 14\cdot 229 + 44\cdot 229^{2} + 74\cdot 229^{3} + 90\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 136 + 119\cdot 229 + 111\cdot 229^{2} + 25\cdot 229^{3} + 169\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 148 + 171\cdot 229 + 43\cdot 229^{2} + 72\cdot 229^{3} + 42\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 162 + 17\cdot 229 + 167\cdot 229^{2} + 27\cdot 229^{3} + 168\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 226 + 134\cdot 229 + 91\cdot 229^{2} + 29\cdot 229^{3} + 217\cdot 229^{4} +O\left(229^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.