Properties

Label 3.11_31e2_37.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 11 \cdot 31^{2} \cdot 37 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$391127= 11 \cdot 31^{2} \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 5 x^{4} - 5 x^{3} - 37 x^{2} + 39 x - 207 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 2\cdot 23 + 22\cdot 23^{2} + 10\cdot 23^{3} + 22\cdot 23^{4} + 18\cdot 23^{5} + 12\cdot 23^{6} + 2\cdot 23^{7} + 14\cdot 23^{8} + 14\cdot 23^{9} + 18\cdot 23^{10} + 4\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 1 + 21\cdot 23 + 12\cdot 23^{3} + 4\cdot 23^{5} + 10\cdot 23^{6} + 20\cdot 23^{7} + 8\cdot 23^{8} + 8\cdot 23^{9} + 4\cdot 23^{10} + 18\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 10 + \left(13 a + 12\right)\cdot 23 + 16\cdot 23^{2} + \left(15 a + 12\right)\cdot 23^{3} + \left(21 a + 2\right)\cdot 23^{4} + \left(17 a + 7\right)\cdot 23^{5} + 8 a\cdot 23^{6} + \left(7 a + 14\right)\cdot 23^{7} + \left(9 a + 4\right)\cdot 23^{8} + \left(22 a + 2\right)\cdot 23^{9} + \left(2 a + 9\right)\cdot 23^{10} + \left(11 a + 9\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 4 }$ $=$ $ a + 8 + \left(9 a + 18\right)\cdot 23 + \left(22 a + 3\right)\cdot 23^{2} + \left(7 a + 19\right)\cdot 23^{3} + \left(a + 7\right)\cdot 23^{4} + \left(5 a + 21\right)\cdot 23^{5} + \left(14 a + 22\right)\cdot 23^{6} + \left(15 a + 19\right)\cdot 23^{7} + \left(13 a + 15\right)\cdot 23^{8} + 14\cdot 23^{9} + \left(20 a + 15\right)\cdot 23^{10} + \left(11 a + 5\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 5 }$ $=$ $ a + 14 + \left(9 a + 10\right)\cdot 23 + \left(22 a + 6\right)\cdot 23^{2} + \left(7 a + 10\right)\cdot 23^{3} + \left(a + 20\right)\cdot 23^{4} + \left(5 a + 15\right)\cdot 23^{5} + \left(14 a + 22\right)\cdot 23^{6} + \left(15 a + 8\right)\cdot 23^{7} + \left(13 a + 18\right)\cdot 23^{8} + 20\cdot 23^{9} + \left(20 a + 13\right)\cdot 23^{10} + \left(11 a + 13\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 16 + \left(13 a + 4\right)\cdot 23 + 19\cdot 23^{2} + \left(15 a + 3\right)\cdot 23^{3} + \left(21 a + 15\right)\cdot 23^{4} + \left(17 a + 1\right)\cdot 23^{5} + 8 a\cdot 23^{6} + \left(7 a + 3\right)\cdot 23^{7} + \left(9 a + 7\right)\cdot 23^{8} + \left(22 a + 8\right)\cdot 23^{9} + \left(2 a + 7\right)\cdot 23^{10} + \left(11 a + 17\right)\cdot 23^{11} +O\left(23^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,4,3)(2,6,5)$
$(1,4)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,5)(4,6)$ $-3$
$3$ $2$ $(3,5)$ $1$
$3$ $2$ $(1,2)(3,5)$ $-1$
$6$ $2$ $(1,4)(2,6)$ $1$
$6$ $2$ $(1,4)(2,6)(3,5)$ $-1$
$8$ $3$ $(1,4,3)(2,6,5)$ $0$
$6$ $4$ $(1,3,2,5)$ $1$
$6$ $4$ $(1,2)(3,6,5,4)$ $-1$
$8$ $6$ $(1,4,3,2,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.