Properties

Label 3.11_31e2.6t11.3c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 11 \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$10571= 11 \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - x^{6} + x^{5} + x^{4} + x^{3} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{3} + 5 x + 57 $
Roots:
$r_{ 1 }$ $=$ $ 14 a^{2} + 44 a + 50 + \left(29 a^{2} + 17 a + 23\right)\cdot 59 + \left(30 a^{2} + 12 a + 17\right)\cdot 59^{2} + \left(22 a^{2} + 15 a + 7\right)\cdot 59^{3} + \left(42 a^{2} + 29 a + 12\right)\cdot 59^{4} + \left(43 a^{2} + 27 a + 13\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 34 a^{2} + 45 a + 38 + \left(a^{2} + 27 a + 49\right)\cdot 59 + \left(22 a^{2} + 24 a + 8\right)\cdot 59^{2} + \left(54 a^{2} + 43 a + 15\right)\cdot 59^{3} + \left(15 a^{2} + 32 a + 22\right)\cdot 59^{4} + \left(58 a^{2} + 33 a + 22\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 11 a^{2} + 29 a + 40 + \left(28 a^{2} + 13 a\right)\cdot 59 + \left(6 a^{2} + 22 a + 16\right)\cdot 59^{2} + \left(41 a^{2} + 10\right)\cdot 59^{3} + \left(56 a + 50\right)\cdot 59^{4} + \left(16 a^{2} + 56 a + 38\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 29 + 19\cdot 59 + 17\cdot 59^{2} + 22\cdot 59^{3} + 35\cdot 59^{4} + 50\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 57 + 39\cdot 59 + 15\cdot 59^{2} + 53\cdot 59^{3} + 39\cdot 59^{4} + 46\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 53 a^{2} + 7 a + 27 + \left(26 a^{2} + 7 a + 25\right)\cdot 59 + \left(36 a^{2} + 44 a + 37\right)\cdot 59^{2} + \left(9 a^{2} + 32 a + 15\right)\cdot 59^{3} + \left(15 a^{2} + 21 a + 56\right)\cdot 59^{4} + \left(13 a^{2} + 21 a + 45\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 13 a^{2} + 35 a + 51 + \left(42 a^{2} + 52 a + 56\right)\cdot 59 + \left(16 a^{2} + 8 a + 10\right)\cdot 59^{2} + \left(28 a^{2} + 24 a + 58\right)\cdot 59^{3} + \left(21 a^{2} + 39 a + 37\right)\cdot 59^{4} + \left(23 a^{2} + 44 a + 20\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 52 a^{2} + 17 a + 4 + \left(48 a^{2} + 58 a + 20\right)\cdot 59 + \left(5 a^{2} + 5 a + 53\right)\cdot 59^{2} + \left(21 a^{2} + 2 a + 53\right)\cdot 59^{3} + \left(22 a^{2} + 57 a + 40\right)\cdot 59^{4} + \left(22 a^{2} + 51 a + 56\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,3)(6,7)$
$(2,5)(4,7)$
$(1,4)(2,7)(3,6)(5,8)$
$(1,2)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-3$
$3$$2$$(1,2)(3,5)(4,6)(7,8)$$-1$
$3$$2$$(1,4)(2,6)(3,7)(5,8)$$1$
$6$$2$$(1,2)(7,8)$$-1$
$6$$2$$(1,4)(2,7)(3,6)(5,8)$$1$
$8$$3$$(1,5,2)(4,7,8)$$0$
$6$$4$$(1,6,2,4)(3,7,5,8)$$-1$
$6$$4$$(1,5,2,3)(4,7,6,8)$$1$
$8$$6$$(1,7,5,8,2,4)(3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.