Properties

Label 3.11_31_53.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 11 \cdot 31 \cdot 53 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$18073= 11 \cdot 31 \cdot 53 $
Artin number field: Splitting field of $f= x^{6} + 2 x^{4} - 2 x^{3} + 5 x^{2} - 14 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 33 a + 25 + \left(9 a + 29\right)\cdot 47 + \left(19 a + 5\right)\cdot 47^{2} + \left(19 a + 29\right)\cdot 47^{3} + \left(7 a + 8\right)\cdot 47^{4} + \left(29 a + 9\right)\cdot 47^{5} + \left(36 a + 45\right)\cdot 47^{6} + \left(46 a + 32\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 44 + \left(37 a + 15\right)\cdot 47 + \left(27 a + 34\right)\cdot 47^{2} + \left(27 a + 1\right)\cdot 47^{3} + \left(39 a + 4\right)\cdot 47^{4} + \left(17 a + 13\right)\cdot 47^{5} + \left(10 a + 42\right)\cdot 47^{6} + 42\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 7 + \left(34 a + 24\right)\cdot 47 + \left(45 a + 5\right)\cdot 47^{2} + \left(17 a + 15\right)\cdot 47^{3} + \left(6 a + 12\right)\cdot 47^{4} + \left(41 a + 28\right)\cdot 47^{5} + \left(23 a + 46\right)\cdot 47^{6} + \left(9 a + 4\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 39 + 29\cdot 47 + 37\cdot 47^{2} + 47^{3} + 25\cdot 47^{4} + 28\cdot 47^{5} + 45\cdot 47^{6} + 14\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 20 + 18\cdot 47 + 42\cdot 47^{2} + 40\cdot 47^{3} + 36\cdot 47^{4} + 4\cdot 47^{5} + 2\cdot 47^{6} + 45\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 24 a + 6 + \left(12 a + 23\right)\cdot 47 + \left(a + 15\right)\cdot 47^{2} + \left(29 a + 5\right)\cdot 47^{3} + \left(40 a + 7\right)\cdot 47^{4} + \left(5 a + 10\right)\cdot 47^{5} + \left(23 a + 6\right)\cdot 47^{6} + 37 a\cdot 47^{7} +O\left(47^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5)$
$(3,4)(5,6)$
$(1,4,3)(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-3$
$3$ $2$ $(3,6)(4,5)$ $-1$
$3$ $2$ $(3,6)$ $1$
$6$ $2$ $(3,4)(5,6)$ $1$
$6$ $2$ $(1,4)(2,5)(3,6)$ $-1$
$8$ $3$ $(1,4,3)(2,5,6)$ $0$
$6$ $4$ $(3,5,6,4)$ $1$
$6$ $4$ $(1,2)(3,5,6,4)$ $-1$
$8$ $6$ $(1,3,5,2,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.