Properties

Label 3.11_31_37.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 11 \cdot 31 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$12617= 11 \cdot 31 \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} + x^{3} + 5 x^{2} - 13 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.11_31_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 27 + \left(18 a + 22\right)\cdot 29 + \left(4 a + 10\right)\cdot 29^{2} + \left(10 a + 10\right)\cdot 29^{3} + \left(23 a + 5\right)\cdot 29^{4} + \left(16 a + 27\right)\cdot 29^{5} + \left(24 a + 4\right)\cdot 29^{6} + \left(20 a + 27\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 2 + \left(4 a + 5\right)\cdot 29 + \left(15 a + 22\right)\cdot 29^{2} + \left(5 a + 28\right)\cdot 29^{3} + \left(6 a + 11\right)\cdot 29^{4} + \left(3 a + 1\right)\cdot 29^{5} + \left(22 a + 28\right)\cdot 29^{6} + \left(6 a + 16\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 2 + \left(10 a + 6\right)\cdot 29 + \left(24 a + 15\right)\cdot 29^{2} + \left(18 a + 27\right)\cdot 29^{3} + \left(5 a + 24\right)\cdot 29^{4} + 12 a\cdot 29^{5} + \left(4 a + 24\right)\cdot 29^{6} + \left(8 a + 19\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 13 + 4\cdot 29 + 8\cdot 29^{2} + 25\cdot 29^{3} + 15\cdot 29^{4} + 2\cdot 29^{5} + 8\cdot 29^{6} + 20\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 26 + 29 + 24\cdot 29^{2} + 11\cdot 29^{3} + 20\cdot 29^{4} + 14\cdot 29^{5} + 2\cdot 29^{6} + 3\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 18 + \left(24 a + 17\right)\cdot 29 + \left(13 a + 6\right)\cdot 29^{2} + \left(23 a + 12\right)\cdot 29^{3} + \left(22 a + 8\right)\cdot 29^{4} + \left(25 a + 11\right)\cdot 29^{5} + \left(6 a + 19\right)\cdot 29^{6} + \left(22 a + 28\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,6,5)$
$(1,4)(2,5)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,6)(4,5)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(3,6)(4,5)$$-1$
$6$$2$$(1,4)(2,5)$$1$
$6$$2$$(1,4)(2,5)(3,6)$$-1$
$8$$3$$(1,3,4)(2,6,5)$$0$
$6$$4$$(3,5,6,4)$$1$
$6$$4$$(1,2)(3,5,6,4)$$-1$
$8$$6$$(1,3,5,2,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.