Properties

Label 3.11_17_47.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 11 \cdot 17 \cdot 47 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$8789= 11 \cdot 17 \cdot 47 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 6 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.11_17_47.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 353 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 191 + 87\cdot 353 + 190\cdot 353^{2} + 278\cdot 353^{3} + 173\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 205 + 19\cdot 353 + 80\cdot 353^{2} + 311\cdot 353^{3} + 125\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 327 + 97\cdot 353 + 213\cdot 353^{2} + 253\cdot 353^{3} + 324\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 337 + 147\cdot 353 + 222\cdot 353^{2} + 215\cdot 353^{3} + 81\cdot 353^{4} +O\left(353^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.