Properties

Label 3.1192.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $1192$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(1192\)\(\medspace = 2^{3} \cdot 149 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.1192.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Determinant: 1.1192.2t1.b.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.1192.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} + 2x^{2} + x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 167 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 82 + 52\cdot 167 + 4\cdot 167^{2} + 112\cdot 167^{3} + 98\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 130 + 59\cdot 167 + 30\cdot 167^{2} + 141\cdot 167^{3} + 118\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 133 + 132\cdot 167 + 55\cdot 167^{2} + 33\cdot 167^{3} + 8\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 157 + 88\cdot 167 + 76\cdot 167^{2} + 47\cdot 167^{3} + 108\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$