Properties

Label 3.10816.4t4.b.a
Dimension $3$
Group $A_4$
Conductor $10816$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $A_4$
Conductor: \(10816\)\(\medspace = 2^{6} \cdot 13^{2}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.10816.1
Galois orbit size: $1$
Smallest permutation container: $A_4$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $A_4$
Projective stem field: Galois closure of 4.0.10816.1

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} + 2x^{2} + 4x + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 11 + 44\cdot 47 + 23\cdot 47^{2} + 38\cdot 47^{3} + 12\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 26 + 33\cdot 47 + 9\cdot 47^{2} + 16\cdot 47^{3} + 10\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 29 + 33\cdot 47 + 32\cdot 47^{2} + 30\cdot 47^{3} + 15\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 30 + 29\cdot 47 + 27\cdot 47^{2} + 8\cdot 47^{3} + 8\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$4$$3$$(1,2,3)$$0$
$4$$3$$(1,3,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.