Properties

Label 21.919969e11.42t418.1
Dimension 21
Group $S_7$
Conductor $ 919969^{11}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$399489276376417600065809328307721314917326658950461619376809715169= 919969^{11} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - x^{5} + 3 x^{4} + x^{3} - 3 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 40 a + 14 + \left(32 a + 37\right)\cdot 67 + \left(36 a + 18\right)\cdot 67^{2} + \left(13 a + 53\right)\cdot 67^{3} + \left(57 a + 62\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 17 + \left(32 a + 65\right)\cdot 67 + \left(38 a + 55\right)\cdot 67^{2} + \left(6 a + 3\right)\cdot 67^{3} + \left(8 a + 15\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 + 25\cdot 67 + 15\cdot 67^{2} + 15\cdot 67^{3} + 54\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 a + 62 + \left(34 a + 32\right)\cdot 67 + \left(28 a + 43\right)\cdot 67^{2} + \left(60 a + 58\right)\cdot 67^{3} + \left(58 a + 40\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 47 + 63\cdot 67 + 30\cdot 67^{2} + 62\cdot 67^{3} + 30\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 40 + \left(34 a + 60\right)\cdot 67 + \left(30 a + 64\right)\cdot 67^{2} + \left(53 a + 3\right)\cdot 67^{3} + \left(9 a + 10\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 11 + 50\cdot 67 + 38\cdot 67^{2} + 3\cdot 67^{3} + 54\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $-1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.