Properties

Label 21.7e10_38953e10.84.1
Dimension 21
Group $S_7$
Conductor $ 7^{10} \cdot 38953^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$2271901555402511743421715396924214389489333457964587201= 7^{10} \cdot 38953^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 3 x^{5} - 4 x^{4} + 4 x^{3} - 3 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 84
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 23 a + 54 + \left(64 a + 36\right)\cdot 71 + \left(6 a + 68\right)\cdot 71^{2} + \left(5 a + 16\right)\cdot 71^{3} + \left(41 a + 27\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 69 + \left(55 a + 31\right)\cdot 71 + \left(19 a + 34\right)\cdot 71^{2} + \left(15 a + 10\right)\cdot 71^{3} + \left(52 a + 26\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 58 + 9\cdot 71 + 60\cdot 71^{2} + 7\cdot 71^{3} + 39\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 56 + 25\cdot 71 + 32\cdot 71^{2} + 12\cdot 71^{3} + 58\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 48 a + 29 + 6 a\cdot 71 + \left(64 a + 18\right)\cdot 71^{2} + \left(65 a + 20\right)\cdot 71^{3} + \left(29 a + 33\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 a + 52 + \left(15 a + 44\right)\cdot 71 + \left(51 a + 18\right)\cdot 71^{2} + \left(55 a + 21\right)\cdot 71^{3} + \left(18 a + 44\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 39 + 63\cdot 71 + 51\cdot 71^{2} + 52\cdot 71^{3} + 55\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.