Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 52 a + 77 + \left(9 a + 33\right)\cdot 89 + \left(28 a + 66\right)\cdot 89^{2} + \left(61 a + 88\right)\cdot 89^{3} + \left(51 a + 37\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 19 + 12\cdot 89 + 13\cdot 89^{2} + 63\cdot 89^{3} + 8\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 37 a + 85 + \left(79 a + 48\right)\cdot 89 + \left(60 a + 75\right)\cdot 89^{2} + \left(27 a + 44\right)\cdot 89^{3} + \left(37 a + 71\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 49 a + 41 + \left(19 a + 73\right)\cdot 89 + 20 a\cdot 89^{2} + \left(10 a + 81\right)\cdot 89^{3} + \left(75 a + 66\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 40 a + 28 + \left(69 a + 72\right)\cdot 89 + \left(68 a + 33\right)\cdot 89^{2} + \left(78 a + 43\right)\cdot 89^{3} + \left(13 a + 48\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 49 + 46\cdot 89 + 3\cdot 89^{2} + 72\cdot 89^{3} + 28\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 58 + 68\cdot 89 + 73\cdot 89^{2} + 51\cdot 89^{3} + 4\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $21$ |
| $21$ | $2$ | $(1,2)$ | $1$ |
| $105$ | $2$ | $(1,2)(3,4)(5,6)$ | $-3$ |
| $105$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $70$ | $3$ | $(1,2,3)$ | $-3$ |
| $280$ | $3$ | $(1,2,3)(4,5,6)$ | $0$ |
| $210$ | $4$ | $(1,2,3,4)$ | $-1$ |
| $630$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ |
| $504$ | $5$ | $(1,2,3,4,5)$ | $1$ |
| $210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $1$ |
| $420$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
| $840$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $720$ | $7$ | $(1,2,3,4,5,6,7)$ | $0$ |
| $504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $1$ |
| $420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.