Properties

Label 21.73e11_1135837e11.42t418.1c1
Dimension 21
Group $S_7$
Conductor $ 73^{11} \cdot 1135837^{11}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$1273583989193004560419741956580772493322136904112354757937661104876356714537500433627101= 73^{11} \cdot 1135837^{11} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 6 x^{5} + 8 x^{4} + 12 x^{3} - 7 x^{2} - 6 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even
Determinant: 1.73_1135837.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 22 + \left(24 a + 21\right)\cdot 31 + \left(17 a + 12\right)\cdot 31^{2} + \left(7 a + 15\right)\cdot 31^{3} + \left(8 a + 18\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 19 + \left(6 a + 29\right)\cdot 31 + \left(12 a + 4\right)\cdot 31^{2} + \left(29 a + 11\right)\cdot 31^{3} + \left(18 a + 29\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 29 + \left(11 a + 6\right)\cdot 31 + \left(3 a + 29\right)\cdot 31^{2} + \left(17 a + 23\right)\cdot 31^{3} + \left(12 a + 9\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 30 + \left(19 a + 13\right)\cdot 31 + \left(27 a + 24\right)\cdot 31^{2} + \left(13 a + 23\right)\cdot 31^{3} + \left(18 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 6 + \left(24 a + 2\right)\cdot 31 + \left(18 a + 23\right)\cdot 31^{2} + \left(a + 26\right)\cdot 31^{3} + \left(12 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 30 + \left(6 a + 3\right)\cdot 31 + \left(13 a + 24\right)\cdot 31^{2} + \left(23 a + 12\right)\cdot 31^{3} + \left(22 a + 27\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 21 + 14\cdot 31 + 5\cdot 31^{2} + 10\cdot 31^{3} + 14\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$-1$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.