Properties

Label 21.71e11_8623e11.42t418.1c1
Dimension 21
Group $S_7$
Conductor $ 71^{11} \cdot 8623^{11}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$4529852731234167348229686791202150245348301358523118189334782617= 71^{11} \cdot 8623^{11} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + x^{5} - x^{3} + x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even
Determinant: 1.71_8623.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 21 + \left(6 a + 20\right)\cdot 31 + \left(22 a + 19\right)\cdot 31^{2} + \left(6 a + 13\right)\cdot 31^{3} + \left(4 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 5\cdot 31 + 12\cdot 31^{2} + 12\cdot 31^{3} + 14\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 21 + 25\cdot 31 + \left(10 a + 16\right)\cdot 31^{2} + \left(16 a + 10\right)\cdot 31^{3} + \left(5 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 + 28\cdot 31 + 17\cdot 31^{2} + 7\cdot 31^{3} + 19\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 15 + \left(30 a + 30\right)\cdot 31 + \left(20 a + 4\right)\cdot 31^{2} + \left(14 a + 2\right)\cdot 31^{3} + \left(25 a + 19\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 + 3\cdot 31 + 26\cdot 31^{2} + 10\cdot 31^{3} + 27\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 6 a + 9 + \left(24 a + 9\right)\cdot 31 + \left(8 a + 26\right)\cdot 31^{2} + \left(24 a + 4\right)\cdot 31^{3} + \left(26 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$-1$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.