Basic invariants
| Dimension: | $21$ |
| Group: | $S_7$ |
| Conductor: | \(739\!\cdots\!449\)\(\medspace = 71^{10} \cdot 8623^{10} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 7.3.612233.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | 84 |
| Parity: | even |
| Projective image: | $S_7$ |
| Projective field: | Galois closure of 7.3.612233.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{2} + 29x + 3 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 25 a + 21 + \left(6 a + 20\right)\cdot 31 + \left(22 a + 19\right)\cdot 31^{2} + \left(6 a + 13\right)\cdot 31^{3} + \left(4 a + 24\right)\cdot 31^{4} +O(31^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 27 + 5\cdot 31 + 12\cdot 31^{2} + 12\cdot 31^{3} + 14\cdot 31^{4} +O(31^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 28 a + 21 + 25\cdot 31 + \left(10 a + 16\right)\cdot 31^{2} + \left(16 a + 10\right)\cdot 31^{3} + \left(5 a + 24\right)\cdot 31^{4} +O(31^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 10 + 28\cdot 31 + 17\cdot 31^{2} + 7\cdot 31^{3} + 19\cdot 31^{4} +O(31^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 3 a + 15 + \left(30 a + 30\right)\cdot 31 + \left(20 a + 4\right)\cdot 31^{2} + \left(14 a + 2\right)\cdot 31^{3} + \left(25 a + 19\right)\cdot 31^{4} +O(31^{5})\)
|
| $r_{ 6 }$ | $=$ |
\( 22 + 3\cdot 31 + 26\cdot 31^{2} + 10\cdot 31^{3} + 27\cdot 31^{4} +O(31^{5})\)
|
| $r_{ 7 }$ | $=$ |
\( 6 a + 9 + \left(24 a + 9\right)\cdot 31 + \left(8 a + 26\right)\cdot 31^{2} + \left(24 a + 4\right)\cdot 31^{3} + \left(26 a + 26\right)\cdot 31^{4} +O(31^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 7 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 7 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $21$ |
| $21$ | $2$ | $(1,2)$ | $1$ |
| $105$ | $2$ | $(1,2)(3,4)(5,6)$ | $-3$ |
| $105$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $70$ | $3$ | $(1,2,3)$ | $-3$ |
| $280$ | $3$ | $(1,2,3)(4,5,6)$ | $0$ |
| $210$ | $4$ | $(1,2,3,4)$ | $-1$ |
| $630$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ |
| $504$ | $5$ | $(1,2,3,4,5)$ | $1$ |
| $210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $1$ |
| $420$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
| $840$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $720$ | $7$ | $(1,2,3,4,5,6,7)$ | $0$ |
| $504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $1$ |
| $420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $-1$ |