Properties

Label 21.61e10_42899e10.84.1c1
Dimension 21
Group $S_7$
Conductor $ 61^{10} \cdot 42899^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$15058095135110113805059217129191771009290371545949718904135503601= 61^{10} \cdot 42899^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 3 x^{5} + 4 x^{4} + x^{3} - 5 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 84
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 283 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 283 }$: $ x^{2} + 282 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 43 a + 260 + \left(202 a + 280\right)\cdot 283 + \left(238 a + 178\right)\cdot 283^{2} + \left(267 a + 124\right)\cdot 283^{3} + \left(54 a + 160\right)\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 69 a + 113 + \left(181 a + 98\right)\cdot 283 + \left(241 a + 41\right)\cdot 283^{2} + \left(111 a + 43\right)\cdot 283^{3} + \left(117 a + 119\right)\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 143 + 255\cdot 283 + 228\cdot 283^{2} + 67\cdot 283^{3} + 157\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 103 + 16\cdot 283 + 32\cdot 283^{2} + 5\cdot 283^{3} + 140\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 240 a + 20 + \left(80 a + 157\right)\cdot 283 + \left(44 a + 215\right)\cdot 283^{2} + \left(15 a + 153\right)\cdot 283^{3} + \left(228 a + 230\right)\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 214 a + 182 + \left(101 a + 210\right)\cdot 283 + \left(41 a + 101\right)\cdot 283^{2} + \left(171 a + 196\right)\cdot 283^{3} + \left(165 a + 124\right)\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 29 + 113\cdot 283 + 50\cdot 283^{2} + 258\cdot 283^{3} + 199\cdot 283^{4} +O\left(283^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$1$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.