Properties

Label 21.6132103e10.84.1
Dimension 21
Group $S_7$
Conductor $ 6132103^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$75178630524780482144519726593541134882263976930181052413529121752049= 6132103^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 3 x^{5} - x^{4} + 5 x^{3} + 3 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 84
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 9 + \left(12 a + 7\right)\cdot 17 + \left(10 a + 11\right)\cdot 17^{2} + \left(7 a + 9\right)\cdot 17^{3} + \left(12 a + 6\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 11\cdot 17 + 5\cdot 17^{2} + 10\cdot 17^{3} + 4\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 8 + \left(a + 13\right)\cdot 17 + \left(9 a + 4\right)\cdot 17^{2} + \left(a + 15\right)\cdot 17^{3} + a\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 8 + \left(4 a + 4\right)\cdot 17 + \left(6 a + 9\right)\cdot 17^{2} + \left(9 a + 6\right)\cdot 17^{3} + \left(4 a + 11\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 + 6\cdot 17 + 9\cdot 17^{2} + 2\cdot 17^{3} + 15\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 + 4\cdot 17 + 15\cdot 17^{2} + 15\cdot 17^{3} + 11\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 5 a + 3 + \left(15 a + 3\right)\cdot 17 + \left(7 a + 12\right)\cdot 17^{2} + \left(15 a + 7\right)\cdot 17^{3} + 15 a\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.