Properties

Label 21.59e10_11003e10.84.1
Dimension 21
Group $S_7$
Conductor $ 59^{10} \cdot 11003^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$13293252253156318363006088608158160704522661600033766217649= 59^{10} \cdot 11003^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{4} + 3 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 84
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 151 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 151 }$: $ x^{2} + 149 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + \left(115 a + 18\right)\cdot 151 + \left(147 a + 18\right)\cdot 151^{2} + \left(102 a + 130\right)\cdot 151^{3} + 135\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 129 a + 44 + \left(35 a + 75\right)\cdot 151 + \left(3 a + 47\right)\cdot 151^{2} + \left(48 a + 37\right)\cdot 151^{3} + \left(150 a + 34\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 101 a + 146 + \left(137 a + 88\right)\cdot 151 + \left(2 a + 125\right)\cdot 151^{2} + \left(124 a + 77\right)\cdot 151^{3} + \left(77 a + 16\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 84 a + 129 + \left(30 a + 76\right)\cdot 151 + \left(89 a + 86\right)\cdot 151^{2} + \left(124 a + 22\right)\cdot 151^{3} + \left(104 a + 15\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 50 a + 46 + \left(13 a + 112\right)\cdot 151 + \left(148 a + 144\right)\cdot 151^{2} + \left(26 a + 20\right)\cdot 151^{3} + \left(73 a + 48\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 94 + 27\cdot 151 + 98\cdot 151^{2} + 132\cdot 151^{3} + 102\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 67 a + 146 + \left(120 a + 53\right)\cdot 151 + \left(61 a + 83\right)\cdot 151^{2} + \left(26 a + 31\right)\cdot 151^{3} + \left(46 a + 100\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.