Properties

Label 21.282...649.84.a
Dimension $21$
Group $S_7$
Conductor $2.825\times 10^{67}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:\(282\!\cdots\!649\)\(\medspace = 5560327^{10} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 7.5.5560327.1
Galois orbit size: $1$
Smallest permutation container: 84
Parity: even
Projective image: $S_7$
Projective field: Galois closure of 7.5.5560327.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 293 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 293 }$: \( x^{2} + 292x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 208 a + 94 + \left(264 a + 111\right)\cdot 293 + \left(139 a + 118\right)\cdot 293^{2} + \left(22 a + 221\right)\cdot 293^{3} + \left(192 a + 127\right)\cdot 293^{4} +O(293^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 85 a + 9 + \left(28 a + 168\right)\cdot 293 + \left(153 a + 286\right)\cdot 293^{2} + \left(270 a + 103\right)\cdot 293^{3} + \left(100 a + 4\right)\cdot 293^{4} +O(293^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 115 + 50\cdot 293 + 27\cdot 293^{2} + 166\cdot 293^{3} + 284\cdot 293^{4} +O(293^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 137 a + 152 + \left(282 a + 250\right)\cdot 293 + \left(107 a + 10\right)\cdot 293^{2} + \left(235 a + 185\right)\cdot 293^{3} + \left(88 a + 85\right)\cdot 293^{4} +O(293^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 182 a + 20 + \left(145 a + 116\right)\cdot 293 + \left(145 a + 153\right)\cdot 293^{2} + \left(78 a + 271\right)\cdot 293^{3} + \left(167 a + 27\right)\cdot 293^{4} +O(293^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 111 a + 202 + \left(147 a + 79\right)\cdot 293 + \left(147 a + 153\right)\cdot 293^{2} + \left(214 a + 204\right)\cdot 293^{3} + \left(125 a + 116\right)\cdot 293^{4} +O(293^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 156 a + 289 + \left(10 a + 102\right)\cdot 293 + \left(185 a + 129\right)\cdot 293^{2} + \left(57 a + 19\right)\cdot 293^{3} + \left(204 a + 232\right)\cdot 293^{4} +O(293^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.