Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 30 a + 35 + \left(70 a + 43\right)\cdot 73 + \left(48 a + 46\right)\cdot 73^{2} + \left(12 a + 62\right)\cdot 73^{3} + \left(47 a + 59\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 a + 60 + \left(35 a + 31\right)\cdot 73 + \left(46 a + 45\right)\cdot 73^{2} + \left(48 a + 44\right)\cdot 73^{3} + \left(18 a + 50\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 29 + 43\cdot 73 + 66\cdot 73^{3} + 2\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 43 a + 52 + \left(2 a + 5\right)\cdot 73 + \left(24 a + 50\right)\cdot 73^{2} + \left(60 a + 51\right)\cdot 73^{3} + \left(25 a + 42\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 23 a + 61 + \left(19 a + 72\right)\cdot 73 + \left(43 a + 53\right)\cdot 73^{2} + \left(36 a + 37\right)\cdot 73^{3} + \left(69 a + 62\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 69 a + 72 + \left(37 a + 59\right)\cdot 73 + \left(26 a + 3\right)\cdot 73^{2} + \left(24 a + 71\right)\cdot 73^{3} + \left(54 a + 57\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 50 a + 57 + \left(53 a + 34\right)\cdot 73 + \left(29 a + 18\right)\cdot 73^{2} + \left(36 a + 31\right)\cdot 73^{3} + \left(3 a + 15\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$21$ |
| $21$ |
$2$ |
$(1,2)$ |
$1$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-3$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$-3$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$0$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$-1$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$1$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$1$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$0$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$1$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.