Properties

Label 21.720...249.84.a
Dimension $21$
Group $S_7$
Conductor $7.209\times 10^{66}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:\(720\!\cdots\!249\)\(\medspace = 4850543^{10} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 7.5.4850543.1
Galois orbit size: $1$
Smallest permutation container: 84
Parity: even
Projective image: $S_7$
Projective field: Galois closure of 7.5.4850543.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: \( x^{2} + 45x + 5 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 41 a + 3 + \left(40 a + 1\right)\cdot 47 + \left(3 a + 14\right)\cdot 47^{2} + \left(18 a + 8\right)\cdot 47^{3} + \left(44 a + 43\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 6 a + 38 + \left(6 a + 41\right)\cdot 47 + \left(43 a + 27\right)\cdot 47^{2} + \left(28 a + 40\right)\cdot 47^{3} + \left(2 a + 19\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 38 + 5\cdot 47 + 25\cdot 47^{2} + 2\cdot 47^{3} + 9\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 41 a + 26 + \left(41 a + 1\right)\cdot 47 + \left(18 a + 19\right)\cdot 47^{2} + \left(15 a + 1\right)\cdot 47^{3} + \left(41 a + 6\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 a + 14 + \left(5 a + 44\right)\cdot 47 + \left(28 a + 14\right)\cdot 47^{2} + \left(31 a + 13\right)\cdot 47^{3} + \left(5 a + 26\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 8 a + 27 + \left(17 a + 33\right)\cdot 47 + \left(45 a + 6\right)\cdot 47^{2} + \left(10 a + 2\right)\cdot 47^{3} + \left(a + 46\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 39 a + 43 + \left(29 a + 12\right)\cdot 47 + \left(a + 33\right)\cdot 47^{2} + \left(36 a + 25\right)\cdot 47^{3} + \left(45 a + 37\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.