Properties

Label 21.43e10_107e10_233e10.84.1c1
Dimension 21
Group $S_7$
Conductor $ 43^{10} \cdot 107^{10} \cdot 233^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$2004848421334875710954164439986393698679641661589828401424449= 43^{10} \cdot 107^{10} \cdot 233^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{5} - x^{4} - x^{3} - x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 84
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 39 a + 65 + \left(122 a + 66\right)\cdot 127 + \left(57 a + 110\right)\cdot 127^{2} + \left(29 a + 34\right)\cdot 127^{3} + \left(95 a + 106\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 92 + 64\cdot 127 + 32\cdot 127^{2} + 23\cdot 127^{3} + 25\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 + 69\cdot 127 + 125\cdot 127^{2} + 63\cdot 127^{3} + 12\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 94 a + 42 + \left(80 a + 11\right)\cdot 127 + \left(63 a + 16\right)\cdot 127^{2} + \left(7 a + 76\right)\cdot 127^{3} + \left(52 a + 104\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 9 + \left(46 a + 125\right)\cdot 127 + \left(63 a + 125\right)\cdot 127^{2} + \left(119 a + 19\right)\cdot 127^{3} + \left(74 a + 22\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 57 + 21\cdot 127 + 51\cdot 127^{2} + 29\cdot 127^{3} + 65\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 88 a + 104 + \left(4 a + 22\right)\cdot 127 + \left(69 a + 46\right)\cdot 127^{2} + \left(97 a + 6\right)\cdot 127^{3} + \left(31 a + 45\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$1$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.