Properties

Label 21.3e11_8388019e11.42t418.1c1
Dimension 21
Group $S_7$
Conductor $ 3^{11} \cdot 8388019^{11}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$2562048004437783823186065825404865813155397891278422826332193592260068817290997193= 3^{11} \cdot 8388019^{11} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 5 x^{5} + 9 x^{4} + 7 x^{3} - 10 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even
Determinant: 1.3_8388019.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 45 + 24\cdot 73 + 24\cdot 73^{3} + 71\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 21 + \left(30 a + 7\right)\cdot 73 + \left(39 a + 18\right)\cdot 73^{2} + \left(21 a + 68\right)\cdot 73^{3} + \left(71 a + 6\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 3\cdot 73 + 10\cdot 73^{2} + 54\cdot 73^{3} + 62\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 55 a + 2 + \left(42 a + 7\right)\cdot 73 + \left(33 a + 33\right)\cdot 73^{2} + \left(51 a + 20\right)\cdot 73^{3} + \left(a + 53\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 61 a + 45 + \left(10 a + 59\right)\cdot 73 + \left(41 a + 42\right)\cdot 73^{2} + \left(52 a + 7\right)\cdot 73^{3} + \left(41 a + 41\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 9 + \left(62 a + 31\right)\cdot 73 + \left(31 a + 9\right)\cdot 73^{2} + \left(20 a + 51\right)\cdot 73^{3} + \left(31 a + 40\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 19 + 13\cdot 73 + 32\cdot 73^{2} + 66\cdot 73^{3} + 15\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$-1$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.