Properties

Label 21.37e10_199e10_461e10.84.1
Dimension 21
Group $S_7$
Conductor $ 37^{10} \cdot 199^{10} \cdot 461^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$203028618112401435703074107365887610708538184672291938047797283249= 37^{10} \cdot 199^{10} \cdot 461^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 2 x^{5} + 6 x^{4} - x^{3} - 5 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 84
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 557 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 557 }$: $ x^{2} + 553 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 216 a + 461 + \left(406 a + 311\right)\cdot 557 + \left(321 a + 201\right)\cdot 557^{2} + \left(135 a + 296\right)\cdot 557^{3} + \left(52 a + 248\right)\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 213 + 459\cdot 557 + 158\cdot 557^{2} + 262\cdot 557^{3} + 111\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 499 + 529\cdot 557 + 104\cdot 557^{2} + 58\cdot 557^{3} + 84\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 342 a + 428 + \left(496 a + 139\right)\cdot 557 + \left(521 a + 543\right)\cdot 557^{2} + \left(326 a + 508\right)\cdot 557^{3} + \left(312 a + 145\right)\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 341 a + 211 + \left(150 a + 50\right)\cdot 557 + \left(235 a + 525\right)\cdot 557^{2} + \left(421 a + 516\right)\cdot 557^{3} + \left(504 a + 321\right)\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 215 a + 125 + \left(60 a + 113\right)\cdot 557 + \left(35 a + 463\right)\cdot 557^{2} + \left(230 a + 180\right)\cdot 557^{3} + \left(244 a + 512\right)\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 293 + 66\cdot 557 + 231\cdot 557^{2} + 404\cdot 557^{3} + 246\cdot 557^{4} +O\left(557^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.