Properties

Label 21.3444743e11.42t418.1c1
Dimension 21
Group $S_7$
Conductor $ 3444743^{11}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$810447877427585574932809800318396836013687537727589439902256428086906007= 3444743^{11} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 4 x^{5} + 4 x^{4} + 3 x^{3} - 4 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Odd
Determinant: 1.3444743.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 9 + \left(21 a + 18\right)\cdot 43 + \left(14 a + 7\right)\cdot 43^{2} + \left(2 a + 20\right)\cdot 43^{3} + \left(18 a + 15\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 24 + \left(5 a + 35\right)\cdot 43 + \left(7 a + 11\right)\cdot 43^{2} + \left(21 a + 27\right)\cdot 43^{3} + \left(9 a + 27\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 a + 29 + \left(37 a + 13\right)\cdot 43 + \left(25 a + 18\right)\cdot 43^{2} + \left(18 a + 38\right)\cdot 43^{3} + \left(35 a + 39\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 a + 38 + \left(37 a + 26\right)\cdot 43 + \left(35 a + 13\right)\cdot 43^{2} + \left(21 a + 41\right)\cdot 43^{3} + \left(33 a + 15\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 + 4\cdot 43 + 28\cdot 43^{2} + 5\cdot 43^{3} + 28\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 17 + \left(5 a + 20\right)\cdot 43 + \left(17 a + 6\right)\cdot 43^{2} + \left(24 a + 31\right)\cdot 43^{3} + \left(7 a + 13\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 13 a + 39 + \left(21 a + 9\right)\cdot 43 + 28 a\cdot 43^{2} + \left(40 a + 8\right)\cdot 43^{3} + \left(24 a + 31\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$-1$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.