Properties

Label 21.3359e11_19559e11.42t418.1
Dimension 21
Group $S_7$
Conductor $ 3359^{11} \cdot 19559^{11}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$98429018806120413242123806711496761461836245873795685943377195817973633311689674197481= 3359^{11} \cdot 19559^{11} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 8 x^{5} + x^{4} + 12 x^{3} - x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 197 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 197 }$: $ x^{2} + 192 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 146 + 125\cdot 197 + 105\cdot 197^{2} + 138\cdot 197^{3} + 42\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 157 a + 172 + \left(73 a + 8\right)\cdot 197 + \left(32 a + 55\right)\cdot 197^{2} + \left(76 a + 195\right)\cdot 197^{3} + \left(3 a + 44\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 160 + 167\cdot 197 + 22\cdot 197^{2} + 12\cdot 197^{3} + 73\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 98 + 105\cdot 197 + 73\cdot 197^{2} + 145\cdot 197^{3} + 126\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 165 + 85\cdot 197 + 22\cdot 197^{2} + 57\cdot 197^{3} + 50\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 a + 169 + \left(123 a + 23\right)\cdot 197 + \left(164 a + 143\right)\cdot 197^{2} + \left(120 a + 149\right)\cdot 197^{3} + \left(193 a + 182\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 76 + 73\cdot 197 + 168\cdot 197^{2} + 89\cdot 197^{3} + 70\cdot 197^{4} +O\left(197^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $-1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.