Properties

Label 21.128...976.84.a.a
Dimension $21$
Group $S_7$
Conductor $1.283\times 10^{79}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $21$
Group: $S_7$
Conductor: \(128\!\cdots\!976\)\(\medspace = 2^{20} \cdot 1787^{10} \cdot 11393^{10} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 7.7.81437164.1
Galois orbit size: $1$
Smallest permutation container: 84
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $S_7$
Projective stem field: Galois closure of 7.7.81437164.1

Defining polynomial

$f(x)$$=$ \( x^{7} - 7x^{5} - x^{4} + 12x^{3} + 2x^{2} - 4x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: \( x^{2} + 69x + 7 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 27 + 38\cdot 71 + 53\cdot 71^{2} + 56\cdot 71^{3} + 55\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 55 a + 69 + \left(69 a + 50\right)\cdot 71 + \left(34 a + 62\right)\cdot 71^{2} + \left(22 a + 30\right)\cdot 71^{3} + \left(2 a + 69\right)\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 51 a + 55 + \left(34 a + 38\right)\cdot 71 + \left(28 a + 5\right)\cdot 71^{2} + \left(22 a + 45\right)\cdot 71^{3} + \left(11 a + 29\right)\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 21 a + 55 + 62\cdot 71 + \left(12 a + 23\right)\cdot 71^{2} + \left(44 a + 57\right)\cdot 71^{3} + \left(26 a + 54\right)\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 20 a + 15 + \left(36 a + 57\right)\cdot 71 + \left(42 a + 27\right)\cdot 71^{2} + \left(48 a + 61\right)\cdot 71^{3} + \left(59 a + 29\right)\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 16 a + 37 + \left(a + 64\right)\cdot 71 + \left(36 a + 62\right)\cdot 71^{2} + \left(48 a + 40\right)\cdot 71^{3} + \left(68 a + 51\right)\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 50 a + 26 + \left(70 a + 42\right)\cdot 71 + \left(58 a + 47\right)\cdot 71^{2} + \left(26 a + 62\right)\cdot 71^{3} + \left(44 a + 63\right)\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character valueComplex conjugation
$1$$1$$()$$21$
$21$$2$$(1,2)$$1$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$