Properties

Label 21.2e18_3e44_11e16.42t299.1
Dimension 21
Group $A_7$
Conductor $ 2^{18} \cdot 3^{44} \cdot 11^{16}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$A_7$
Conductor:$11862004710203242703974199567822205967663104= 2^{18} \cdot 3^{44} \cdot 11^{16} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_7$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 21 a + 28 + \left(22 a + 5\right)\cdot 103 + \left(42 a + 60\right)\cdot 103^{2} + \left(13 a + 62\right)\cdot 103^{3} + \left(17 a + 70\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 67 + 7\cdot 103 + 16\cdot 103^{2} + 44\cdot 103^{3} + 46\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 84 + 21\cdot 103 + 32\cdot 103^{2} + 43\cdot 103^{3} + 59\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 82 a + 49 + \left(80 a + 6\right)\cdot 103 + \left(60 a + 80\right)\cdot 103^{2} + \left(89 a + 33\right)\cdot 103^{3} + \left(85 a + 74\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 66 + 36\cdot 103 + 56\cdot 103^{2} + 11\cdot 103^{3} + 73\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 77 a + 73 + \left(68 a + 16\right)\cdot 103 + \left(42 a + 45\right)\cdot 103^{2} + \left(20 a + 16\right)\cdot 103^{3} + \left(58 a + 25\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 26 a + 47 + \left(34 a + 8\right)\cdot 103 + \left(60 a + 19\right)\cdot 103^{2} + \left(82 a + 97\right)\cdot 103^{3} + \left(44 a + 62\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(3,4,5,6,7)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$360$ $7$ $(1,2,3,4,5,6,7)$ $0$
$360$ $7$ $(1,3,4,5,6,7,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.