Properties

Label 21.2e16_29e11_47e11_14563e11.42t418.1
Dimension 21
Group $S_7$
Conductor $ 2^{16} \cdot 29^{11} \cdot 47^{11} \cdot 14563^{11}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$12350760194986624716747310006119513115571299032855591720951766409772480921787339177984= 2^{16} \cdot 29^{11} \cdot 47^{11} \cdot 14563^{11} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 3 x^{5} + 13 x^{4} - x^{3} - 12 x^{2} + 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 197 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 197 }$: $ x^{2} + 192 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 23 a + 18 + \left(13 a + 185\right)\cdot 197 + \left(157 a + 84\right)\cdot 197^{2} + \left(72 a + 146\right)\cdot 197^{3} + \left(125 a + 111\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 193 a + 17 + \left(152 a + 10\right)\cdot 197 + \left(114 a + 144\right)\cdot 197^{2} + \left(68 a + 131\right)\cdot 197^{3} + \left(182 a + 44\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 153 + 2\cdot 197 + 71\cdot 197^{2} + 5\cdot 197^{3} + 137\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 76 + 180\cdot 197 + 132\cdot 197^{2} + 177\cdot 197^{3} + 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 174 a + 133 + \left(183 a + 30\right)\cdot 197 + \left(39 a + 69\right)\cdot 197^{2} + \left(124 a + 156\right)\cdot 197^{3} + \left(71 a + 74\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 + 191\cdot 197 + 114\cdot 197^{2} + 7\cdot 197^{3} + 121\cdot 197^{4} +O\left(197^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 4 a + 194 + \left(44 a + 187\right)\cdot 197 + \left(82 a + 170\right)\cdot 197^{2} + \left(128 a + 162\right)\cdot 197^{3} + \left(14 a + 99\right)\cdot 197^{4} +O\left(197^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $-1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.