Properties

Label 21.283e10_14173e10.84.1c1
Dimension 21
Group $S_7$
Conductor $ 283^{10} \cdot 14173^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$1077661149479244873529904155255800191190224976895435642521379442401= 283^{10} \cdot 14173^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 2 x^{5} + 5 x^{4} - 3 x^{3} - 3 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 84
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 193 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 193 }$: $ x^{2} + 192 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 127 a + \left(88 a + 53\right)\cdot 193 + \left(192 a + 177\right)\cdot 193^{2} + \left(77 a + 118\right)\cdot 193^{3} + \left(45 a + 18\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 66 a + 127 + \left(104 a + 14\right)\cdot 193 + 88\cdot 193^{2} + \left(115 a + 4\right)\cdot 193^{3} + \left(147 a + 179\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 + 156\cdot 193 + 2\cdot 193^{2} + 175\cdot 193^{3} + 163\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 138 + 63\cdot 193 + 58\cdot 193^{2} + 86\cdot 193^{3} + 170\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 54 + 85\cdot 193 + 51\cdot 193^{2} + 120\cdot 193^{3} + 34\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 + 131\cdot 193 + 34\cdot 193^{2} + 134\cdot 193^{3} + 57\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 23 + 75\cdot 193 + 166\cdot 193^{2} + 132\cdot 193^{3} + 147\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$1$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.