Properties

Label 21.28118369e11.42t418.1
Dimension 21
Group $S_7$
Conductor $ 28118369^{11}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$8687431337873703753572040506786767327466341217443336157269803745908987589210017569= 28118369^{11} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 5 x^{5} + 9 x^{4} + 7 x^{3} - 9 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 48 a + 24 + \left(11 a + 48\right)\cdot 53 + \left(21 a + 6\right)\cdot 53^{2} + \left(17 a + 49\right)\cdot 53^{3} + \left(32 a + 29\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 a + 8 + \left(6 a + 52\right)\cdot 53 + \left(12 a + 34\right)\cdot 53^{2} + \left(52 a + 50\right)\cdot 53^{3} + \left(37 a + 25\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 30 + \left(46 a + 46\right)\cdot 53 + \left(40 a + 23\right)\cdot 53^{2} + 35\cdot 53^{3} + \left(15 a + 19\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 51 a + \left(52 a + 31\right)\cdot 53 + \left(43 a + 34\right)\cdot 53^{2} + \left(3 a + 22\right)\cdot 53^{3} + \left(2 a + 33\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 45 + 32\cdot 53 + \left(9 a + 51\right)\cdot 53^{2} + \left(49 a + 46\right)\cdot 53^{3} + \left(50 a + 37\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 + 5\cdot 53 + 33\cdot 53^{2} + 15\cdot 53^{3} + 29\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 5 a + 4 + \left(41 a + 48\right)\cdot 53 + \left(31 a + 26\right)\cdot 53^{2} + \left(35 a + 44\right)\cdot 53^{3} + \left(20 a + 35\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $-1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.