Properties

Label 21.23e11_39551e11.42t418.1c1
Dimension 21
Group $S_7$
Conductor $ 23^{11} \cdot 39551^{11}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$352970451695310292261783011146411369809873020638052249620026942777= 23^{11} \cdot 39551^{11} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 3 x^{5} - 4 x^{4} + 2 x^{3} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even
Determinant: 1.23_39551.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 24\cdot 79 + 59\cdot 79^{2} + 14\cdot 79^{3} + 75\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 13 + \left(41 a + 63\right)\cdot 79 + \left(38 a + 63\right)\cdot 79^{2} + \left(62 a + 22\right)\cdot 79^{3} + \left(21 a + 76\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 7\cdot 79 + 29\cdot 79^{2} + 22\cdot 79^{3} + 78\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 54 a + 38 + 37 a\cdot 79 + \left(40 a + 61\right)\cdot 79^{2} + \left(16 a + 46\right)\cdot 79^{3} + \left(57 a + 35\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 + 18\cdot 79^{2} + 75\cdot 79^{3} + 30\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 a + 68 + \left(47 a + 32\right)\cdot 79 + \left(66 a + 72\right)\cdot 79^{2} + 40 a\cdot 79^{3} + \left(74 a + 72\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 28 a + 40 + \left(31 a + 29\right)\cdot 79 + \left(12 a + 12\right)\cdot 79^{2} + \left(38 a + 54\right)\cdot 79^{3} + \left(4 a + 26\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$-1$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.