Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 + 24\cdot 79 + 59\cdot 79^{2} + 14\cdot 79^{3} + 75\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 25 a + 13 + \left(41 a + 63\right)\cdot 79 + \left(38 a + 63\right)\cdot 79^{2} + \left(62 a + 22\right)\cdot 79^{3} + \left(21 a + 76\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 37 + 7\cdot 79 + 29\cdot 79^{2} + 22\cdot 79^{3} + 78\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 54 a + 38 + 37 a\cdot 79 + \left(40 a + 61\right)\cdot 79^{2} + \left(16 a + 46\right)\cdot 79^{3} + \left(57 a + 35\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 39 + 18\cdot 79^{2} + 75\cdot 79^{3} + 30\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 51 a + 68 + \left(47 a + 32\right)\cdot 79 + \left(66 a + 72\right)\cdot 79^{2} + 40 a\cdot 79^{3} + \left(74 a + 72\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 28 a + 40 + \left(31 a + 29\right)\cdot 79 + \left(12 a + 12\right)\cdot 79^{2} + \left(38 a + 54\right)\cdot 79^{3} + \left(4 a + 26\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$21$ |
| $21$ |
$2$ |
$(1,2)$ |
$-1$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$3$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$-3$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$0$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$1$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$-1$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$1$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$1$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$-1$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$0$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$-1$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.