Properties

Label 21.19e11_56747e11.42t418.1c1
Dimension 21
Group $S_7$
Conductor $ 19^{11} \cdot 56747^{11}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$2289083247558245654446356912016359148277311660818808855268803463057= 19^{11} \cdot 56747^{11} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 2 x^{4} - 3 x^{3} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even
Determinant: 1.19_56747.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 32 + 6\cdot 61 + 23\cdot 61^{2} + 56\cdot 61^{3} + 36\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 33 a + 59 + \left(53 a + 35\right)\cdot 61 + \left(49 a + 48\right)\cdot 61^{2} + \left(20 a + 38\right)\cdot 61^{3} + \left(44 a + 5\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 + 45\cdot 61 + 20\cdot 61^{2} + 53\cdot 61^{3} + 36\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 + 45\cdot 61 + 60\cdot 61^{2} + 15\cdot 61^{3} + 34\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 + 36\cdot 61 + 20\cdot 61^{2} + 10\cdot 61^{3} + 18\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 31 + \left(7 a + 56\right)\cdot 61 + \left(11 a + 44\right)\cdot 61^{2} + \left(40 a + 9\right)\cdot 61^{3} + \left(16 a + 29\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 51 + 17\cdot 61 + 25\cdot 61^{2} + 59\cdot 61^{3} + 21\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$-1$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.