Properties

Label 21.19e10_83e10_577e10.84.1
Dimension 21
Group $S_7$
Conductor $ 19^{10} \cdot 83^{10} \cdot 577^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$389112394612258426837336537919063029088953395046449327781201= 19^{10} \cdot 83^{10} \cdot 577^{10} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} - x^{4} + 4 x^{3} + 2 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 84
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 28 + 81\cdot 97 + 93\cdot 97^{2} + 12\cdot 97^{3} + 59\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 + 50\cdot 97 + 7\cdot 97^{2} + 83\cdot 97^{3} + 65\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 + 26\cdot 97 + 28\cdot 97^{2} + 33\cdot 97^{3} + 86\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 a + 85 + \left(29 a + 7\right)\cdot 97 + \left(92 a + 27\right)\cdot 97^{2} + \left(2 a + 83\right)\cdot 97^{3} + \left(52 a + 68\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 65 a + 20 + \left(67 a + 5\right)\cdot 97 + \left(4 a + 90\right)\cdot 97^{2} + \left(94 a + 90\right)\cdot 97^{3} + \left(44 a + 20\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 75 + 27\cdot 97 + 25\cdot 97^{2} + 60\cdot 97^{3} + 29\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 87 + 91\cdot 97 + 18\cdot 97^{2} + 24\cdot 97^{3} + 57\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.