Properties

Label 21.173e11_3821e11.42t418.1c1
Dimension 21
Group $S_7$
Conductor $ 173^{11} \cdot 3821^{11}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$10530634731945586612192391680212609987821585047262054298537405817= 173^{11} \cdot 3821^{11} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 2 x^{3} + x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even
Determinant: 1.173_3821.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 39\cdot 53 + 17\cdot 53^{2} + 46\cdot 53^{3} + 6\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 39 + \left(38 a + 10\right)\cdot 53 + \left(27 a + 39\right)\cdot 53^{2} + \left(39 a + 38\right)\cdot 53^{3} + \left(10 a + 2\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 45 + \left(14 a + 30\right)\cdot 53 + \left(25 a + 5\right)\cdot 53^{2} + \left(13 a + 10\right)\cdot 53^{3} + \left(42 a + 6\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 a + 49 + \left(34 a + 5\right)\cdot 53 + \left(32 a + 8\right)\cdot 53^{2} + \left(25 a + 48\right)\cdot 53^{3} + \left(44 a + 3\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 29 + \left(18 a + 44\right)\cdot 53 + \left(20 a + 50\right)\cdot 53^{2} + \left(27 a + 11\right)\cdot 53^{3} + \left(8 a + 50\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 42 + 35\cdot 53 + 38\cdot 53^{2} + 31\cdot 53^{3} + 34\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 46 + 44\cdot 53 + 51\cdot 53^{2} + 24\cdot 53^{3} + 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$-1$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.