Properties

Label 21.1423e11_2153e11.42t418.1c1
Dimension 21
Group $S_7$
Conductor $ 1423^{11} \cdot 2153^{11}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$223222634274864848993763654877487179289305033659403877675849243956108919= 1423^{11} \cdot 2153^{11} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + x^{5} + 4 x^{4} - 5 x^{3} + x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Odd
Determinant: 1.1423_2153.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 45\cdot 47 + 44\cdot 47^{2} + 47^{3} + 44\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 43 + \left(19 a + 11\right)\cdot 47 + \left(27 a + 25\right)\cdot 47^{2} + \left(3 a + 26\right)\cdot 47^{3} + \left(37 a + 37\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 27\cdot 47 + 16\cdot 47^{2} + 23\cdot 47^{3} + 29\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 44 + \left(27 a + 26\right)\cdot 47 + \left(19 a + 13\right)\cdot 47^{2} + \left(43 a + 6\right)\cdot 47^{3} + \left(9 a + 14\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 + 4\cdot 47 + 10\cdot 47^{2} + 46\cdot 47^{3} + 22\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 + 35\cdot 47^{2} + 14\cdot 47^{3} + 22\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 9 + 24\cdot 47 + 42\cdot 47^{2} + 21\cdot 47^{3} + 17\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$-1$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.