Properties

Label 21.13e10_53e10_6871e10.84.1c1
Dimension 21
Group $S_7$
Conductor $ 13^{10} \cdot 53^{10} \cdot 6871^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$5654467399136913451447240695092858482392380172527846687691936346801= 13^{10} \cdot 53^{10} \cdot 6871^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 3 x^{5} + 3 x^{4} - x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 84
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 173 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 173 }$: $ x^{2} + 169 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 48 a + 164 + \left(89 a + 96\right)\cdot 173 + \left(29 a + 76\right)\cdot 173^{2} + \left(86 a + 34\right)\cdot 173^{3} + \left(48 a + 147\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 117 + 36\cdot 173 + 73\cdot 173^{2} + 52\cdot 173^{3} + 163\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 130\cdot 173 + 103\cdot 173^{2} + 120\cdot 173^{3} + 131\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 125 a + 10 + \left(83 a + 60\right)\cdot 173 + \left(143 a + 105\right)\cdot 173^{2} + \left(86 a + 3\right)\cdot 173^{3} + \left(124 a + 82\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 + 158\cdot 173 + 160\cdot 173^{2} + 76\cdot 173^{3} + 136\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 134 + 134\cdot 173 + 22\cdot 173^{2} + 41\cdot 173^{3} + 97\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 53 + 75\cdot 173 + 149\cdot 173^{2} + 16\cdot 173^{3} + 107\cdot 173^{4} +O\left(173^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$1$
$105$$2$$(1,2)(3,4)(5,6)$$-3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.