Properties

Label 21.11e11_103e11_701e11.42t418.1
Dimension 21
Group $S_7$
Conductor $ 11^{11} \cdot 103^{11} \cdot 701^{11}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$79328128052225814546322585964831441100448107804390076723353680617= 11^{11} \cdot 103^{11} \cdot 701^{11} $
Artin number field: Splitting field of $f= x^{7} - x^{5} - 3 x^{4} - x^{3} + 3 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{2} + 101 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 83 a + 106 + \left(30 a + 15\right)\cdot 113 + \left(78 a + 87\right)\cdot 113^{2} + \left(103 a + 111\right)\cdot 113^{3} + \left(97 a + 96\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 85 + \left(82 a + 75\right)\cdot 113 + \left(34 a + 91\right)\cdot 113^{2} + \left(9 a + 34\right)\cdot 113^{3} + \left(15 a + 38\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 74 + 95\cdot 113 + 78\cdot 113^{2} + 72\cdot 113^{3} + 112\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 85 a + 88 + \left(10 a + 98\right)\cdot 113 + \left(11 a + 57\right)\cdot 113^{2} + \left(79 a + 91\right)\cdot 113^{3} + \left(35 a + 46\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 61 + 29\cdot 113 + 87\cdot 113^{2} + 94\cdot 113^{3} + 32\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 60 + 106\cdot 113 + 94\cdot 113^{2} + 33\cdot 113^{3} + 67\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 28 a + 91 + \left(102 a + 29\right)\cdot 113 + \left(101 a + 67\right)\cdot 113^{2} + \left(33 a + 12\right)\cdot 113^{3} + \left(77 a + 57\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $-1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.