Properties

Label 21.101e10_2647e10.84.1
Dimension 21
Group $S_7$
Conductor $ 101^{10} \cdot 2647^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$1865319158476726725059922827153931124925598793438071049= 101^{10} \cdot 2647^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{4} - 2 x^{3} + x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 84
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 179 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 179 }$: $ x^{2} + 172 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 50 a + 108 + \left(151 a + 150\right)\cdot 179 + \left(84 a + 126\right)\cdot 179^{2} + \left(46 a + 60\right)\cdot 179^{3} + \left(118 a + 165\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 157 a + 29 + \left(160 a + 35\right)\cdot 179 + \left(20 a + 160\right)\cdot 179^{2} + \left(97 a + 167\right)\cdot 179^{3} + \left(166 a + 160\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 157 a + 144 + \left(44 a + 35\right)\cdot 179 + \left(138 a + 126\right)\cdot 179^{2} + \left(131 a + 107\right)\cdot 179^{3} + \left(82 a + 170\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 54 + \left(18 a + 109\right)\cdot 179 + \left(158 a + 145\right)\cdot 179^{2} + \left(81 a + 110\right)\cdot 179^{3} + \left(12 a + 155\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 129 a + 100 + \left(27 a + 85\right)\cdot 179 + \left(94 a + 32\right)\cdot 179^{2} + \left(132 a + 122\right)\cdot 179^{3} + \left(60 a + 51\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 169 + \left(134 a + 13\right)\cdot 179 + \left(40 a + 154\right)\cdot 179^{2} + \left(47 a + 175\right)\cdot 179^{3} + \left(96 a + 80\right)\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 112 + 106\cdot 179 + 149\cdot 179^{2} + 149\cdot 179^{3} + 109\cdot 179^{4} +O\left(179^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $21$
$21$ $2$ $(1,2)$ $1$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$105$ $2$ $(1,2)(3,4)$ $1$
$70$ $3$ $(1,2,3)$ $-3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $-1$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.