Properties

Label 21.1018217e11.42t418.1c1
Dimension 21
Group $S_7$
Conductor $ 1018217^{11}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$21$
Group:$S_7$
Conductor:$1219674040646832408133851469057151549139667642231569827881870597433= 1018217^{11} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + x^{5} - 3 x^{4} - x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 42T418
Parity: Even
Determinant: 1.1018217.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 13 + \left(27 a + 19\right)\cdot 37 + \left(18 a + 22\right)\cdot 37^{2} + \left(33 a + 8\right)\cdot 37^{3} + \left(2 a + 15\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 12 + \left(29 a + 11\right)\cdot 37 + \left(7 a + 28\right)\cdot 37^{2} + \left(5 a + 34\right)\cdot 37^{3} + \left(15 a + 16\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 3 + \left(9 a + 2\right)\cdot 37 + \left(18 a + 33\right)\cdot 37^{2} + \left(3 a + 12\right)\cdot 37^{3} + \left(34 a + 30\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 32 + \left(2 a + 32\right)\cdot 37 + \left(22 a + 9\right)\cdot 37^{2} + \left(6 a + 36\right)\cdot 37^{3} + \left(8 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 31 + \left(7 a + 3\right)\cdot 37 + \left(29 a + 30\right)\cdot 37^{2} + \left(31 a + 10\right)\cdot 37^{3} + \left(21 a + 35\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 30 + \left(34 a + 24\right)\cdot 37 + \left(14 a + 21\right)\cdot 37^{2} + \left(30 a + 3\right)\cdot 37^{3} + \left(28 a + 17\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 28 + 16\cdot 37 + 2\cdot 37^{2} + 4\cdot 37^{3} + 5\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$21$
$21$$2$$(1,2)$$-1$
$105$$2$$(1,2)(3,4)(5,6)$$3$
$105$$2$$(1,2)(3,4)$$1$
$70$$3$$(1,2,3)$$-3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$-1$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.