Properties

Label 20.995173e10.70.1c1
Dimension 20
Group $S_7$
Conductor $ 995173^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$20$
Group:$S_7$
Conductor:$952765113902610714886822099393460999502966730959717162270649= 995173^{10} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{5} - x^{4} + 2 x^{3} + 3 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 19 + \left(60 a + 48\right)\cdot 73 + \left(70 a + 34\right)\cdot 73^{2} + \left(68 a + 45\right)\cdot 73^{3} + \left(48 a + 63\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 60 a + 58 + \left(12 a + 69\right)\cdot 73 + \left(2 a + 40\right)\cdot 73^{2} + \left(4 a + 35\right)\cdot 73^{3} + \left(24 a + 68\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 63 + 2\cdot 73 + 28\cdot 73^{2} + 70\cdot 73^{3} + 29\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 60 a + 30 + \left(15 a + 12\right)\cdot 73 + \left(15 a + 38\right)\cdot 73^{2} + \left(59 a + 40\right)\cdot 73^{3} + \left(72 a + 50\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 65 + 63\cdot 73 + 22\cdot 73^{2} + 70\cdot 73^{3} + 45\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 64 + \left(57 a + 72\right)\cdot 73 + \left(57 a + 67\right)\cdot 73^{2} + \left(13 a + 56\right)\cdot 73^{3} + 63\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 66 + 21\cdot 73 + 59\cdot 73^{2} + 45\cdot 73^{3} + 42\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$20$
$21$$2$$(1,2)$$0$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$-4$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.