Properties

Label 20.613e10_129589e10.70.1
Dimension 20
Group $S_7$
Conductor $ 613^{10} \cdot 129589^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$20$
Group:$S_7$
Conductor:$10006590574643394366697528687058706907925006506373213118517486293356411636551249= 613^{10} \cdot 129589^{10} $
Artin number field: Splitting field of $f= x^{7} - 8 x^{5} - 4 x^{4} + 10 x^{3} + 4 x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 251 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 251 }$: $ x^{2} + 242 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 187 + \left(248 a + 80\right)\cdot 251 + \left(197 a + 89\right)\cdot 251^{2} + \left(25 a + 98\right)\cdot 251^{3} + \left(38 a + 53\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 187 a + 4 + \left(245 a + 12\right)\cdot 251 + \left(181 a + 246\right)\cdot 251^{2} + \left(131 a + 14\right)\cdot 251^{3} + \left(48 a + 182\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 64 a + 181 + \left(5 a + 28\right)\cdot 251 + \left(69 a + 132\right)\cdot 251^{2} + \left(119 a + 14\right)\cdot 251^{3} + \left(202 a + 236\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 35 + 91\cdot 251 + 40\cdot 251^{2} + 238\cdot 251^{3} + 162\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 221 a + 206 + \left(2 a + 24\right)\cdot 251 + \left(53 a + 117\right)\cdot 251^{2} + \left(225 a + 132\right)\cdot 251^{3} + \left(212 a + 119\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 195 + \left(150 a + 223\right)\cdot 251 + \left(43 a + 193\right)\cdot 251^{2} + \left(107 a + 168\right)\cdot 251^{3} + \left(200 a + 29\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 223 a + 196 + \left(100 a + 40\right)\cdot 251 + \left(207 a + 185\right)\cdot 251^{2} + \left(143 a + 85\right)\cdot 251^{3} + \left(50 a + 220\right)\cdot 251^{4} +O\left(251^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $20$
$21$ $2$ $(1,2)$ $0$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $-4$
$70$ $3$ $(1,2,3)$ $2$
$280$ $3$ $(1,2,3)(4,5,6)$ $2$
$210$ $4$ $(1,2,3,4)$ $0$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $2$
$420$ $6$ $(1,2,3)(4,5)$ $0$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.