Properties

Label 20.571e10_1699e10.70.1c1
Dimension 20
Group $S_7$
Conductor $ 571^{10} \cdot 1699^{10}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$20$
Group:$S_7$
Conductor:$738405412071075642174022520000845062962106329648881080919201= 571^{10} \cdot 1699^{10} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{5} + 2 x^{4} + x^{3} - 2 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 + 22\cdot 67 + 26\cdot 67^{2} + 28\cdot 67^{3} + 42\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 52 + 6\cdot 67 + 58\cdot 67^{2} + 35\cdot 67^{3} + 60\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 48 a + 3 + \left(60 a + 14\right)\cdot 67 + \left(63 a + 32\right)\cdot 67^{2} + \left(22 a + 14\right)\cdot 67^{3} + \left(38 a + 56\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 61 + \left(6 a + 7\right)\cdot 67 + \left(3 a + 26\right)\cdot 67^{2} + \left(44 a + 42\right)\cdot 67^{3} + \left(28 a + 52\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 51 + 27\cdot 67 + 52\cdot 67^{2} + 48\cdot 67^{3} + 23\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 10 + \left(65 a + 39\right)\cdot 67 + \left(26 a + 48\right)\cdot 67^{2} + \left(17 a + 27\right)\cdot 67^{3} + \left(44 a + 3\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 51 a + 7 + \left(a + 16\right)\cdot 67 + \left(40 a + 24\right)\cdot 67^{2} + \left(49 a + 3\right)\cdot 67^{3} + \left(22 a + 29\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$20$
$21$$2$$(1,2)$$0$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$-4$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.