Properties

Label 20.177...001.70.a.a
Dimension $20$
Group $S_7$
Conductor $1.775\times 10^{67}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $20$
Group: $S_7$
Conductor: \(177\!\cdots\!001\)\(\medspace = 541^{10} \cdot 9811^{10} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 7.5.5307751.1
Galois orbit size: $1$
Smallest permutation container: 70
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $S_7$
Projective stem field: Galois closure of 7.5.5307751.1

Defining polynomial

$f(x)$$=$ \( x^{7} - x^{6} - x^{5} - 6x^{3} - 3x^{2} + 2x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: \( x^{2} + 96x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 88 a + 20 + \left(25 a + 13\right)\cdot 97 + \left(78 a + 5\right)\cdot 97^{2} + \left(a + 19\right)\cdot 97^{3} + \left(67 a + 6\right)\cdot 97^{4} +O(97^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 9 a + 11 + \left(71 a + 48\right)\cdot 97 + \left(18 a + 57\right)\cdot 97^{2} + \left(95 a + 39\right)\cdot 97^{3} + \left(29 a + 71\right)\cdot 97^{4} +O(97^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 42 a + 59 + \left(58 a + 84\right)\cdot 97 + \left(48 a + 94\right)\cdot 97^{2} + \left(34 a + 6\right)\cdot 97^{3} + \left(83 a + 25\right)\cdot 97^{4} +O(97^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 76 + 97 + 93\cdot 97^{2} + 17\cdot 97^{3} + 18\cdot 97^{4} +O(97^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 14 + 17\cdot 97 + 17\cdot 97^{2} + 28\cdot 97^{3} + 74\cdot 97^{4} +O(97^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 11 + 25\cdot 97 + 35\cdot 97^{2} + 89\cdot 97^{3} + 21\cdot 97^{4} +O(97^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 55 a + 4 + \left(38 a + 4\right)\cdot 97 + \left(48 a + 85\right)\cdot 97^{2} + \left(62 a + 89\right)\cdot 97^{3} + \left(13 a + 73\right)\cdot 97^{4} +O(97^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character valueComplex conjugation
$1$$1$$()$$20$
$21$$2$$(1,2)$$0$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$-4$
$70$$3$$(1,2,3)$$2$
$280$$3$$(1,2,3)(4,5,6)$$2$
$210$$4$$(1,2,3,4)$$0$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$2$
$420$$6$$(1,2,3)(4,5)$$0$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$0$